A 4-choosable graph that is not (8:2)-choosable

Author:

Dvořák Zdeněk1,Hu Xiaolan2,Sereni Jean-Sébastien3

Affiliation:

1. Charles University

2. Central China Normal University

3. Centre National de la Recherche Scientifique (CNRS)

Abstract

List coloring is a generalization of graph coloring introduced by Erdős, Rubin and Taylor in 1980, which has become extensively studied in graph theory. A graph G is said to be k-choosable, or k-list-colorable, if, for every way of assigning a list (set) of k colors to each vertex of G, it is possible to choose a color from each list in such a way that no two neighboring vertices receive the same color. Note that if the lists are all the same, then this is asking for G to have chromatic number at most k. One might think that the case where all the lists are the same would be the hardest: surely making the lists different should make it easier to ensure that neighboring vertices have different colors. Rather surprisingly, however, this is not the case. A counterexample is provided by the complete bipartite graph K2,4. If the two vertices in the first vertex class are assigned the lists {a,b} and {c,d}, while the vertices in the other vertex class are assigned the lists {a,c}, {a,d}, {b,c} and {b,d}, then it is easy to check that it is not possible to obtain a proper coloring from these lists, so G is not 2-choosable, and yet the chromatic number of G is 2. A famous theorem of Galvin, which solved the so-called Dinitz conjecture, states that the line graph of the complete bipartite graph Kn,n is n-choosable. Equivalently, if each square of an n×n grid is assigned a list of n colors, it is possible to choose a color from each list in such a way that no color appears more than once in any row or column. One can generalize this notion by requiring a choice of not just one color from each list, but some larger number of colors. A graph G is said to be (A,B)-list-colorable if, for every assignment of lists to the vertices of G, each consisting of A colors, there is an assignment of sets of B colors to the vertices such that each vertex is assigned a set that is a subset of its list and the sets assigned to pairs of adjacent vertices are disjoint. (When B=1 this simply says that G is A-choosable.) In this short paper, the authors answer a question that has remained open for almost four decades since it was posed by Erdős, Rubin and Taylor in their seminal paper: if a graph is (A,B)-list-colorable, is it true that it is also (mA,mB)-list-colorable for every m≥1? Quite surprisingly, the answer is again negative - the authors construct a graph that is (4,1)-list-colorable but not (8,2)-list-colorable.

Publisher

Alliance of Diamond Open Access Journals

Subject

Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A characterization of (4,2)‐choosable graphs;Journal of Graph Theory;2019-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3