Genetic diversity and population structure of Echinococcus multilocularis: An in-silico global analysis

Author:

Alshammari Ayed,Subhani Muhammad,Wakid Majed,Alkhaldi Abdulsalam,Hussain Shujaat,Malik Muhammad,Saqib Muhammad,Qamar Warda,Alvi Mughees

Abstract

Objectives: Alveolar echinococcosis is caused by Echinococcus multilocularis, a parasite of zoo¬notic significance with a wide range of intermediate and final hosts, and the parasite survives suc¬cessfully in diversified conditions. Plentiful studies have been done to study the genetic structure of the population of the parasite and the level of intimate kinship using mitochondrial (mt) DNA. The present study was conducted to investigate the population structure, genetic variation, and phylogenetic relationship of various isolates of E. multiocularis submitted to GenBank worldwide. Sequences of mt genes (mt-cytochrome c oxidase (cox1), mt-NADH dehydrogenase (nad1)) of E. multilocularis were analyzed to achieve the set goals. Materials and Methods: A total of 275 and 124 gene sequences of mt-cox1 and mt-nad1 belong¬ing to E. multilocularis, respectively, were retrieved from the National Center for Biotechnology Information GenBank. The retrieved sequences were subjected to alignment with respective reference sequences using MEGA software. The PopArt software was used to establish medi¬an-joining networks, while DnaSp was used to calculate neutrality and diversity indices. MrBayes software was used to investigate the phylogenetic association between haplotypes based on Bayesian phylogeny. Results: Approximately 13 and 20 distinctive haplotypes of nad1 and cox1 genes, respectively, were observed in the present study. In both of the mt genes, diversity indices indicated low haplo¬type (mt-cox1 = 0.140; mt-nad1 = 0.374) and nucleotide (mt-cox1 = 0.00111; mt-nad1 = 0.00287) diversities. The values of Tajima’s D and Fu Fs for a population of both of the genes under study were found to be negative. Conclusion: This study is a maiden attempt to provide insights into the population structure and genetic variation of E. multilocularis on a global scale. However, it is suggested that to better understand the population structure and genetic diversity of E. multilocularis, more geographical locations and amplifications of full-length gene sequences should be considered, which could be helpful in widening the insights into the genetic diversity of E. multilocularis.

Publisher

ScopeMed

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3