A Method of Colour-Histogram Matching for Nigerian Paper Currency Notes Classification.

Author:

Omeiza Isaac,Ogunbiyi O,Ogundepo O,Otuoze A,Egbune D,Osunsanya K

Abstract

In this paper a new algorithm for classification of three Nigerian paper currency notes, namely 200, 500, and 1000 Naira (N) denominations is presented. The work examines the effectiveness of using only colour histograms to differentiate between the classes or denominations of the three Nigerian paper currency notes. The bin-heights of the histograms of the HSI component images for the paper currencies are used as features while a rule-based classifier designed to take advantage of the changes or variations in the histogram patterns is used to classify the paper currencies into the right denomination class. The algorithm involves the utilization of a simple and effective comparison strategy as opposed to the existing, too-rigid metrics for histogram-comparison used by other authors for color indexing in content-based image retrieval systems. Over a testing data-set of 300 samples, the algorithm achieved an average classification accuracy of 98.66%, and classification accuracies of 100%, 99% and 97% for the N=200, N=500 and N=1000 denominations, respectively. The proposed algorithm does not require extensive preprocessing of the paper-currency images and as such is fast in implementation.

Publisher

ScopeMed

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3