A Low Profile Four-Port MIMO Array Antenna with Defected Ground Structure for 5G IoT Applications

Author:

Elalaouy Ouafae,Ghzaoui Mohammed,Foshi Jaouad

Abstract

The overwhelming demand for high-data-rate applications and low latency, which are prerequisites for multimedia content, are propelling technological advancements toward 5G communication networks. To acquire the intended 5G requirements and further encapsulate many application areas, a number of technologies has been implemented including millimeter waves and multiple input multiple output (MIMO) systems. One of the primary limitations in creating small MIMO antennas is the presence of inter-element mutual coupling. To cope with the non-desired mutual coupling, this work embodies a defected ground structure (DGS) MIMO antenna operating in a millimeter-wave 5G band. The proposed MIMO array antenna comprises four ports with eight identical patches. It has a total surface area of 50x60 mm2, and is printed on FR4 epoxy substrates with a 4.4 dielectric constant. The bandwidth of the presented structure is extended thanks to the incorporation of slots. The simulation results demonstrate a wide bandwidth covering from 26.9 to 29.3 GHz, and that owing to the DGS, the mutual coupling is alleviated. Subsequently, a high level of isolation (greater than -27 dB), and an ultimate peak gain of 5.525 dBi are reached over the resonance bandwidth. Moreover, investigation of the MIMO diversity performance shows the following parameters: the envelope correlation coefficient (ECC) < 0.0003, diversity gain (DG) > 9.999 dB, and the total active reflection coefficient (TARC) < -10 dB in the operating band. Additionally, the antenna is found to cover the band allocated to 5G in both USA (27.5-28.35 GHz) and Japan (27.5-28.28 GHz). Based on the obtained results, the proposed MIMO array antenna is useful for application in both 5G band handsets and future IoT applications.

Publisher

ScopeMed

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3