Author:
Kussaibi Haitham,Alsafwani Noor
Abstract
Background: Assessment of thyroid nodules histopathology using AI is crucial for an accurate diagnosis. This systematic review analyzes recent works employing deep learning approaches for classifying thyroid nodules based on histopathology images, evaluating their performance, and identifying limitations. Methods: Eligibility criteria focused on peer-reviewed English papers published in the last 5 years, applying deep learning to categorize thyroid histopathology images. The PubMed database was searched using relevant keyword combinations. Results: Out of 103 articles, 11 studies met inclusion criteria. They used convolutional neural networks to classify thyroid neoplasm. Most studies aimed for basic tumor subtyping; however, 3 studies targeted the prediction of tumor-associated mutation. Accuracy ranged from 77% to 100%, with most over 90%. Discussion: The findings from our analysis reveal the effectiveness of deep learning in identifying discriminative morphological patterns from histopathology images, thus enhancing the accuracy of thyroid nodule histopathological classification. Key limitations were small sample sizes, subjective annotation, and limited dataset diversity. Further research with larger diverse datasets, model optimization, and real-world validation is essential to translate these tools into clinical practice.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classification of Thyroid Cancer Subtypes With Imagenet Pretrained CNNS;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29