Аnalysis of methods of calculating road structures based by shear resistance in the soil

Author:

Aleksandrov A. S.1ORCID

Affiliation:

1. Siberian State Automobile and Highway University (SibADI)

Abstract

Introduction. Checking the soil of the subgrade and the layers of road pavement made of loosely cohesive materials by shear resistance is one of the three mandatory conditions for calculating road clothing according to strength criteria. The methodology for checking the soil of the subgrade and the sandy layers of the road pavement is constantly being modified, which is why changes concerning certain calculation details appear in each new version of the regulatory document. The purpose of this work is to analyze the advantages of the classical solution of A.M. Krivissky and to reveal the essence of the errors made in subsequent modifications of this calculation.Materials and methods. The analysis of solutions is carried out from the standpoint of compliance with the basics of mechanics. It is shown that the calculation of the total shear stress in the classical solution of A.M. Krivissky is performed in accordance with the principle of force superposition, which consists in calculating the components of the stress tensor from each force (time load and the own weight of the layer materials) separately, followed by summing the corresponding components. In this case, the active shear stresses from the temporary load and the own weight of the materials are calculated as the equivalent stress of the Mohr-Coulomb criterion. The calculation of these two components of the total shear stress is performed at the same value of the internal friction angle. Since the angle of inclination of the sliding surface to the main axes is determined by the sum or difference of 45 degrees and half of the internal friction angle, the tangential and normal stresses, which are components of the active shear stress, both from the temporary load and the own weight of the materials, are determined for the same shear surface rotated to the main axes at the same angle. In the current normative calculations, the active shear stresses from the temporary load and the own weight of the materials are determined at different angles of internal friction. This means that the active shear stresses from the temporary load and the own weight of the materials act on two different shear surface rotated to the main axes at different angles. Such stresses cannot be summed up or compared with each other. In addition to this error of the normative calculation methods, their other disadvantages are given.Results. As a result of a detailed analysis of the known modifications of the classical solution, obvious contradictions to the principles of continuum mechanics are established. As an alternative to modern calculation criteria for shear resistance, the article presents criteria for soil strength in which the shear stress exceeds the equivalent stress in the Mohr-Coulomb criterion. The principle of deducing formulas for calculating the first critical load and the total shear stress from the strength criteria under consideration is shown.Conclusion. Conclusions are drawn about the need to return to the classical solution obtained by specialists of the Leningrad School of the USSR, or to develop a fundamentally new solution based on a new plasticity condition in which the total shear stress exceeds the similar characteristic of the stress state of the original Mohr - Coulomb criterion.

Publisher

Siberian State Automobile and Highway University (SibADI)

Reference69 articles.

1. Barksdale R.D. Laboratory Evaluation of Rutting in Base course Materials. Proceedings of the 3rd International Conference on Asphalt Pavements. London. 1972. 1: 161-174.

2. Leng J. Characteristics and Behavior of Geogrid- Reinforced Aggregate under Cyclic Load. PhD thesis, North Carolina State University, Raleigh, The USA. 2002.

3. Cheung L.W. Laboratory assessment of pavement foundation materials. PhD thesis, University of Nottingham, The United Kingdom. 1994.

4. Sweere G.T.H. Unbound granular bases of roads. PhD thesis, Delft University of Technology, Delft, The Netherlands. 1990.

5. Wolff H., Visser A. Incorporating elasto-plasticity in granular layer pavement design. Proceedings of Institution of Civil Engineers Transport. 1994. 105: 259 – 272.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3