Feasibility of continuous action unit parameters for road underlay formation

Author:

Nikolaev V. A.1

Affiliation:

1. Yaroslavl Technical University

Abstract

Introduction. Russia has a large spatial disunity of settlements and other objects. Therefore, it is irrational to use low-productivity technical means of cyclical action in the construction of roads. To increase the pace of road construction, improve quality, reduce energy costs for road construction, where relief allows, it is economically feasible to use a set of units of continuous action. Continuous action units, moving one after another, will consistently perform a set of works, carrying out the full construction of the road by flow method. The complex should have a continuous action unit to form a underlying layer. To create complex units, their theoretical justification is necessary. In order to determine the geometric and dynamic parameters of the loading part of the unit to form the underlying layer, the process of moving the bucket filled with soil before it is unloaded is considered.The method of research. Based on the constructive layout of the loading part of the unit, the process of moving the bucket filled with soil before it is unloaded is divided into the stages: vertical ascent, moving in the direction of the leading star of the upper drive, two phases of the bucket rotation on the leading stars of the upper drive, moving from the moment of the end of the turn on the leading star of the upper drive to the start of the turn on the lower turn. When the bucket moves vertically up, the ground is no for dumped. Graphically, this angle of the bucket is chosen when it moves in the direction of the leading star of the upper drive, at which the ground will not fall out of the bucket. Two phases of the bucket rotation on the leading stars of the upper drive and moving the bucket from the moment of the end of the turn on the leading star of the upper drive to the moment of the turn on the lower turning roller are considered. The necessary parameters dependencies have been deduced.Results. Based on the developed methodology, the geometric and dynamic parameters of the loading part of the unit are defined. In particular, the torque of the top drive, the angular velocity of the drive sprockets, the power required for the top drive, the transmission ratio from the hydraulic motor to the sprockets are calculated. Based on the power transferred, a hydromotor was selected for the upper drive of the unit.Conclusion. The calculations reveal the maximum traction force of all buckets during their travel to discharge the soil, the torque of the top drive, the angular velocity of the top drive sprockets and the power required for the top drive. It is advisable to use for the upper drive of the unit gerotor hydromotor MT-160 and two-stage planetary gearbox. The calculations made it possible to develop the design of the elements of the loading part of the continuous action unit to form the underlying layer of roads.

Publisher

Siberian State Automobile and Highway University (SibADI)

Reference25 articles.

1. Karasyev G.N. Opredelenie sily rezaniya grunta s uchyotom uprugih deformacij pri razrushenii [Determination of the cutting force of the soil, taking into account elastic deformations during destruction] Construction and road machinery, 2008. 4: 36-42. (In Russian)

2. Karnaukhov A.I.. Orlovskiy S.N Opredelenie zatrat udel’noj energii na process rezaniya lesnyh pochv torcevymi frezam [Determination of the cost of specific energy for the process of cutting forest soils with end mills]. Construction and road machinery, 2010. 1: 20-22. (In Russian)

3. Kravets I.M. Opredelenie kriticheskoj glubiny rezaniya pri kombinirovannom rezanii gruntov gidrofrezo [Determination of the critical cutting depth for combined cutting of soils with a hydrophreeze]. Construction and road machinery, 2010. 5: 47-49. (In Russian)

4. Kirillov F.F. Determinirovannaya matematicheskaya model’ vremennogo raspredeleniya tyagovogo usiliya dlya mnogorezcovyh rabochih organov zemlerojnyh mashin[Deterministic mathematical model of the time distribution of traction force for multi-cutter working bodies of earthmoving machines]. Construction and road machinery, 2010. 11: 44-48. (In Russian)

5. Berestov E.I. Vliyanie treniya grunta po poverhnosti nozha na soprotivlenie rezaniyu[Effect of soil friction on the knife surface on the cutting resistance]. Construction and road machinery, 2010. 11: 34-38. (In Russian)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3