CRITICAL REVIEW OF METHODS FOR EVALUATING ACOUSTIC CHARACTERISTICS OR PREMISES

Author:

Fediuk R. S.1,Baranov A. V.1,Timokhin R. A.1

Affiliation:

1. the Far Eastern Federal University

Abstract

Introduction: The development of effective structural materials with improved acoustic characteristics is relevant for the modern construction industry. Considering the variety of international building standards for acoustic insulation and soundproofing of buildings, it is essential to systematize the modern methods of studying these characteristics. The purpose of the study was a comprehensive review of methods for determining acoustic characteristics in construction, as well as an analysis of literature and international standards to improve the health and comfort of the urban population.Main part:Due to the variety and complication of the study of the acoustic characteristics of buildings, premises and individual walling, the article provides an analysis of methods for evaluating these characteristics. The limitations on the size of rooms and sound frequencies for measuring reverberation time have been identified. The process of improving the method of measuring acoustic impedance in Kundt’s tube is shown. The methodology for determining the numerical parameters of sound insulation in buildings using the study of building envelopes taking into account the spectra of various noise sources located inside and outside the building is considered in detail. It was found that existing methods for measuring impact noise show poor reproducibility in the low frequency range. The analysis of the works proved that the sound reflection characteristics theoretically depend on the thickness and rigidity of the reflecting surface and its surface density.Conclusions: The scope of building materials with improved acoustic characteristics is quite extensive. Further research may be aimed at improving methods for studying the characteristics of sound absorption and sound reflection.Financial transparency: the authors have no financial interest in the presented materials or methods. There is no conflict of interest.

Publisher

Siberian State Automobile and Highway University (SibADI)

Reference49 articles.

1. Cuthbertson D., Berardi U., Briens C., Berruti F. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass and Bioenergy. 2019. doi:10.1016/j.biombioe.2018.11.007.

2. Lesovik V.S., Chulkova I.L. Upravlenie strukturoobrazovaniem stroitel’nyh kompozitov: monografija [Structural management of building composites: monograph]. Sibirskaja gosudarstvennaja avto-mobil’no-dorozhnaja akademija. Omsk, 2011: 420. (in Russian)

3. Vinokur R. Infrasonic sound pressure in dwellings at the Helmholtz resonance actuated by environmental noise and vibration, Appl. Acoust. (2004). doi:10.1016/S0003-682X(03)00117-8.

4. Li X., Liu Q., Pei S., Song L., Zhang X. Structure-borne noise of railway composite bridge: Numerical simulation and experimental validation. J. Sound Vib. 2015. doi:10.1016/j.jsv.2015.05.030.

5. Tsunekawa S., Kajikawa Y., Nohara S., Ariizumi M., Okada A. Study on the perceptible level for infrasound, J. Sound Vib. 1987. doi:10.1016/S0022-460X (87)80089-5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3