Crowdsourced Forecasts and the Market Reaction to Earnings Announcement News
Author:
Schafhäutle Sandra G.1ORCID,
Veenman David2ORCID
Affiliation:
1. University of Pennsylvania
2. University of Amsterdam
Abstract
ABSTRACT
This study examines whether crowdsourced forecasts of earnings and revenues help investors unravel bias in earnings announcement news, which is commonly derived from analyst forecasts. Our results suggest that investors, on average, understand and price the predictive signals reflected in crowdsourced forecasts about the bias in analyst-based earnings and revenue surprises. Using the staggered addition of firms to the Estimize platform, we find that crowdsourced coverage is associated with reductions in the mispricing of forecast bias and declines in earnings announcement premia. We further find some evidence that managers use income-increasing accruals to meet the crowdsourced forecast benchmark and that they respond to crowdsourced coverage through increased downward earnings and revenue guidance. Overall, we conclude that user-generated content on crowdsourced financial information platforms helps investors discount biases in traditional equity research and thereby better process the news in earnings announcements.
JEL Classifications: G14; G20; M41.
Publisher
American Accounting Association
Subject
Economics and Econometrics,Finance,Accounting
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Social Media and Finance;SSRN Electronic Journal;2024