Detection of Financial Statement Fraud Using Evolutionary Algorithms

Author:

Alden Matthew E.1,Bryan Daniel M.1,Lessley Brenton J.1,Tripathy Arindam1

Affiliation:

1. University of Washington Tacoma

Abstract

ABSTRACT In this paper, we use a Genetic Algorithm (GA) and MARLEDA—a modern Estimation of Distribution Algorithm (EDA)—to evolve and train several fuzzy rule-based classifiers (FRBCs) to detect patterns of financial statement fraud. We find that both GA and MARLEDA demonstrate a better ability to classify unseen corporate data observations than those of a traditional logistic regression model, and provide validity for detecting financial statement fraud with Evolutionary Algorithms (EAs) and FRBCs. Using ten-fold cross-validation, the GA and MARLEDA yield average training classification accuracy rates of 75.47 percent and 74.26 percent, respectively, and average validation accuracy rates of 63.75 percent and 64.46 percent, respectively.

Publisher

American Accounting Association

Subject

Computer Science Applications,Accounting

Reference33 articles.

1. Conservatism, SEC investigation, and fraud;Alam;Journal of Accounting and Public Policy,2012

2. On the usefulness of MOEAs for getting compact FRBSs under parameter tuning and rule selection;Alcalá;Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases,2008

3. Alden, M. 2007. MARLEDA: Effective Distribution Estimation through Markov Random Fields. Ph.D. thesis, The University of Texas at Austin.

4. Ranking state financial management: A multilevel fuzzy rule-based system;Ammar;Decision Sciences,2000

5. Fuzzy ranking of financial statements for fraud detection;Chai;2006 IEEE International Conference on Fuzzy Systems,2006

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3