Python Code and Illustrative Crisis Management Data from Twitter

Author:

Wang Yen-Yao1ORCID

Affiliation:

1. Auburn University

Abstract

ABSTRACT This paper presents the Python code and illustrative crisis management data from Twitter. The code includes Twitter data collection and three machine learning algorithms that are readily usable. Three machine learning algorithms generate sentiment measures, extract topics from the tweets, and compare the similarity of topics across time. The code and the illustrative data will be accessible to researchers that are interested in using Twitter data to analyze a wide range of public perceptions and responses such as StockTwits activity; firm events such as the announcement of investment decisions or security breaches; public movements such as #earthday; and significant global events such as the invasion of Ukraine. A better understanding of the code and datasets will enable researchers in this field to engage in more extensive studies that fully utilize this rich data source to capture public perceptions.

Publisher

American Accounting Association

Subject

Management of Technology and Innovation,Information Systems and Management,Human-Computer Interaction,Accounting,Information Systems,Software,Management Information Systems

Reference16 articles.

1. Borah, A., and TellisG. J.. 2016. Halo (spillover) effects in social media: Do product recalls of one brand hurt or help rival brands?JMR, Journal of Marketing Research53 ( 2): 143– 160. https://doi.org/10.1509/jmr.13.0009

2. Gao, Y., Duan W., and RuiH.. 2022. Does social media accelerate product recalls? Evidence from the pharmaceutical industry. Information Systems Research(forthcoming).

3. Gioia, D. A., Corley K. G., and HamiltonA. L.. 2013. Seeking qualitative rigor in inductive research: Notes on the Gioia methodology. Organizational Research Methods16 ( 1): 15– 31. https://doi.org/10.1177/1094428112452151

4. Hardy, B., and FordL. R.. 2014. It's not me, it's you: Miscomprehension in surveys. Organizational Research Methods17 ( 2): 138– 162. https://doi.org/10.1177/1094428113520185

5. He, S., Rui H., and WhinstonA. B.. 2018. Social media strategies in product-harm crises. Information Systems Research29 ( 2): 362– 380. https://doi.org/10.1287/isre.2017.0707

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3