Fundamental Analysis and Mean-Variance Optimal Portfolios

Author:

Lyle Matthew R1ORCID,Yohn Teri Lombardi2ORCID

Affiliation:

1. Northwestern University

2. Emory University

Abstract

ABSTRACT We integrate fundamental analysis with mean-variance portfolio optimization to form fully optimized fundamental portfolios. We find that fully optimized fundamental portfolios produce large out-of-sample factor alphas with high Sharpe ratios. They substantially outperform equal-weighted and value-weighted portfolios of stocks in the extreme decile of expected returns, an approach commonly used in fundamental analysis research. They also outperform the factor-based and parametric portfolio policy approaches used in the prior portfolio optimization literature. The relative performance gains from mean-variance optimized fundamental portfolios are persistent through time, robust to eliminating small capitalization firms from the investment set, and robust to incorporating estimated transactions costs. Our results suggest that future fundamental analysis research could implement this portfolio optimization approach to provide greater investment insights. JEL Classifications: G12; G14; G17.

Publisher

American Accounting Association

Subject

Economics and Econometrics,Finance,Accounting

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3