Finding Needles in a Haystack: Using Data Analytics to Improve Fraud Prediction

Author:

Perols Johan L.1,Bowen Robert M.1,Zimmermann Carsten1,Samba Basamba2

Affiliation:

1. University of San Diego

2. RWTH Aachen University

Abstract

ABSTRACT Developing models to detect financial statement fraud involves challenges related to (1) the rarity of fraud observations, (2) the relative abundance of explanatory variables identified in the prior literature, and (3) the broad underlying definition of fraud. Following the emerging data analytics literature, we introduce and systematically evaluate three data analytics preprocessing methods to address these challenges. Results from evaluating actual cases of financial statement fraud suggest that two of these methods improve fraud prediction performance by approximately 10 percent relative to the best current techniques. Improved fraud prediction can result in meaningful benefits, such as improving the ability of the SEC to detect fraudulent filings and improving audit firms' client portfolio decisions.

Publisher

American Accounting Association

Subject

Economics and Econometrics,Finance,Accounting

Reference60 articles.

1. MetaFraud: A meta-learning framework for detecting financial fraud;Abbasi;MIS Quarterly,2012

2. Editorial—Big Data, data science, and analytics: The opportunity and challenge for IS research;Agarwal;Information Systems Research,2014

3. Forensic expert classification of management fraud risk factors;Apostolou;Journal of Forensic Accounting,2000

4. The relation between equity incentives and misreporting: The role of risk-taking incentives;Armstrong;Journal of Financial Economics,2013

5. Association of Certified Fraud Examiners (ACFE). 2014. Report to the Nation on Occupational Fraud and Abuse. Austin, TX: ACFE.

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3