A Framework for Auditor Data Literacy: A Normative Position

Author:

Appelbaum Deniz1ORCID,Showalter D. Scott2,Sun Ting3ORCID,Vasarhelyi Miklos A.4ORCID

Affiliation:

1. Montclair State University

2. North Carolina State University

3. The College of New Jersey

4. Rutgers, The State University of New Jersey

Abstract

SYNOPSIS Many accounting firms are starting to re-align their audit processes to incorporate technology and Audit Data Analytics (ADA), as the traditional procedures would seem to not be sufficiently effective and efficient to meet evolving market expectations (Byrnes et al. 2018; Forbes Insights 2017, 2018). This paper provides commentary on how data analytics knowledge should be required of the profession. We discuss the current business environment, Big Data, and the existing data analytics efforts made by businesses. Regarding the complementarity of available data analytics tools and knowledge, it proposes a guideline for the content and levels of ADA knowledge and skills of auditors serving in different roles. Finally, suggestions are provided to facilitate the adoption of ADA and provide solutions to challenges in the CPA exam, audit standards, and education. In this data-centric business environment, acquiring the knowledge and skills of data analysis should be a current professional priority.

Publisher

American Accounting Association

Subject

Accounting

Reference94 articles.

1. Accountability Modules. 2012 a. Data analysis: Analyzing data—Inferential statistics . Available at: http://www.preciousheart.net/chaplaincy/Auditor_Manual/20inferd.pdf

2. Accountability Modules. 2012 b. Data analysis: Describing data—Descriptive statistics . Available at: http://www.preciousheart.net/chaplaincy/Auditor_Manual/10descsd.pdf

3. Adadi, A., and BerradaM. 2018. Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access: Practical Innovations, Open Solutions6: 52138– 52160. https://doi.org/10.1109/ACCESS.2018.2870052

4. Agrawal, R., Imielinski T., and SwamiA. 1993. Mining association rules between sets of items in large databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data.

5. Al-Awadhi, A. , Appelbaum D., and VasarhelyiM.A. 2017. Expert knowledge elicitations in a procurement card context: A visual expert dashboard (VED). Working paper, Rutgers, The State University of New Jersey, Newark.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3