Signals flowing from mature tissues to shoot apical meristem affect phyllotaxis in coniferous shoot.

Author:

Zagórska-Marek Beata,Banasiak Alicja

Abstract

Axial homodromy in growing shoots of perennial plants with spiral phyllotaxis is the case when the chirality of phyllotactic pattern does not change in consecutive growth increments of the same axis. In conifers such as <em>Picea</em> or<em> Abies</em> this rule is strictly observed, except for the rare cases of discontinuous phyllotactic transitions. In <em>Torreya</em>, however, the chirality changes, at random, every year. The pattern of primordia packing, executed by vegetative shoot apical meristem (SAM), depends in <em>Torreya</em> on their identity. The primordia of bud scales are initiated in the decussate and those of needles in bijugate spiral pattern. The decussate, achiral i.e. neutral pattern always precedes the formation of new spiral pattern and thus facilitates random selection of its chiral configuration. Periodic change in organ identity cannot itself be responsible for the special behavior of <em>Torreya</em>, because in other conifers it also exists. There is, however, one important difference: in Torreya, when the initiation of bud scales begins at SAM, the distance between differentiated protoxylem and the initiation site gradually increases, while in other conifers it remains constant and small. In <em>Torreya</em>, at this phase of development, the rate of xylem differentiation and the rate of organogenesis become uncoupled. Closer anatomical examination shows that the decussate pattern in a bud scale zone develops slowly suggesting gradual decrease of the putative signal flowing acropetally from differentiated protoxylem, responsible for positioning of primordia. We hypothesize that in the absence of this signal SAM starts acting autonomously, distributing primordia according to their identity only. A constant presence of the signal in other conifers assures the continuation of the same phyllotactic pattern throughout the period of bud scale formation, despite the change in organ identity.

Publisher

Polish Botanical Society

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3