Ways of signal transmission and physiological role of electrical potentials in plants

Author:

Dziubińska Halina

Abstract

Plants are subject to stimuli from the environment on which they strongly depend and in contrast to animals, they are unable to escape harmful influences. Therefore, being able to receive stimuli they have developed adequate responses to them. Such a reaction can occur in the area of a stimulus action or cover the whole plant or its parts. In the latter case, it is a systemic reaction. The plant reaction is expressed by various intensity, rate and kind of response. It is interesting to know the character of the signal informing about a stimulus, the routes of its propagation and the transmission mechanism. Three conceptions of excitation are distinguished: 1) propagation of chemical agents formed at the site of a stimulus action with the flow of the phloem sap or through the atmosphere (in the case of volatile substances) to other plant parts, 2) a very fast transmission by the xylem in the wave of hydraulic pressure formed after a plant damage. From combining the "hydraulic" and "chemical" hypothesis a conception of hydraulic dispersion has been formulated which assumes that chemical substances synthetized after an injury can be transferred very fast with the wave of hydraulic pressure changes in the whole plant, 3) a stimulus evokes the action potential (AP), and its transmission along the whole plant, plant organ or specialized tissue, by local circuits from cell to cell. Strong, damaging stimuli can evoke variation potentials (VPs), the character of which differs from APs. It is postulated that transmission of VP occurs by a hydraulic dispersion and electrical changes seem to be secondary phenomena.

Publisher

Polish Botanical Society

Subject

Plant Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3