Light-Dependent Reactions of Photosynthesis in Mesophyll and Bundle Sheath Chloroplasts of C4 Plant Maize. How Our Views Have Changed in Recent Years

Author:

Romanowska ElżbietaORCID,Wasilewska-Dębowska WioletaORCID

Abstract

Abstract Plants experience a range of light intensities and qualities in their environment. Leaves are subjected to spatial and temporal gradients in incident light, which has major consequences in the photosynthetic carbon assimilation. Plants acclimate to light by developing a range of mechanisms, from adjustments in leaf morphology to changes in the photosynthetic apparatus stoichiometry. In C4 plants, light intensity is a major limiting factor for photosynthesis at optimum temperatures. Under limiting light, it is not clear if all of factors (e.g., temperature, mineral nutrition, water supply) are co-limiting or if there is one primary limitation. Differences in light quality and intensity have a profound impact on C4 photosynthesis, where pathways require metabolic coordination of the mesophyll and bundle sheath cycles. Changes in the linear versus cyclic electron flux in maize (NADP-malic enzyme C4 subtype) in the mesophyll and bundle sheath chloroplasts in response to light may lead to an imbalance in the coordination of the C3 and C4 pathways. Additionally, the rearrangement of the thylakoid complexes of both types of chloroplasts in maize optimizes the light energy distribution between the mesophyll and bundle sheath cells and may also participate in energy dissipation. This review aims to highlight the changes in the understanding of the functions of photosystem II in maize bundle sheath chloroplasts and the role of super and megacomplexes in the thylakoids.

Publisher

Polish Botanical Society

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chlorophyll fluorescence: a smart tool for maize improvement;Cereal Research Communications;2024-09-13

2. Enzymatic kinetics of photosystem II with DCBQ as a substrate in extended Michaelis-Menten model;Journal of Photochemistry and Photobiology B: Biology;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3