New Biological Rhythm in Cambia of Trees – “Music of Trees” Revisited 50 Years After the Discovery of Cambial Morphogenetic Waves

Author:

Zagórska-Marek BeataORCID

Abstract

AbstractAmong periodic patterns having origin in cambium and recorded in figured wood, the tangential waviness has been the first to be discovered and thoroughly characterized. Yet another pattern, manifested in the rippled surface of some tree trunks, has remained basically undescribed. This work is the first attempt to provide information on its morphology, dynamics, and relation to the tangential waviness. Developmental analysis of the annual ring widths on the transverse surface of the stem showed that crests and throughs forming a ripple pattern result from a highly controlled proliferation of cambial cells. These cells’ activity regularly oscillates in time and space between an increased and a reduced state at approximately 10-year intervals, independently of the environmental cues considered in dendrochronological studies. This rhythm leads to the development of radial waviness and is a major factor affecting wood ring width. Radial waviness is dynamic; it propagates along the stem axis and is often synchronized with tangential waviness in a nonrandom manner. Possible causes of radial pattern emergence based on auxin waves, the role of other phytohormones, and recent discoveries of MADS-box genes that regulate cambial cell proliferation are discussed.

Publisher

Polish Botanical Society

Subject

Plant Science

Reference33 articles.

1. Activity–dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen;Baba;Proceedings of the National Academy of Sciences of the United States of America,2011

2. Secondary development in the stem: When Arabidopsis and trees are closer than it seems;Barra-Jiménez;Current Opinion in Plant Biology,2017

3. Intrinsic cell polarity coupled to growth axis formation in tobacco BY-2 cells;Chan;Current Biology,2020

4. Contrefil à rythme annuel dans les Faro, Daniellia sp. pl.;Détienne;Bois et Forêts des Tropiques,1979

5. Climatic cycles and tree-growth.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3