Solar radiation affects bloat potential of wheat forage

Author:

Malinowski Dariusz Piotr,Pinchak William E.,Pitta Dipti,Min Byeng R.

Abstract

Frothy bloat is a serious digestive disorder in cattle (<em>Bos taurus</em> L.) grazing winter wheat (<em>Triticum aestivum</em> L.) pastures in the Southern Great Plains of the USA. Wheat plant metabolism may be one of the factors involved in bloat occurrence. In a series of experiments conducted during 2004–2007, we evaluated the effects of solar radiation intensity (ambient, 100% vs. reduced, 25%), a short-time (24 h vs. 48 h) exposure to solar radiation, and forage allowance (high, 18 kg vs. low, 6 kg DM/100 kg body weight) on seasonal concentration of phenolic compounds and foam strength (a measure of bloat potential) of wheat forage ‘Cutter’. Reduced solar radiation decreased total phenolic concentration and increased foam strength when compared to ambient solar radiation. Forage allowance interacted with solar radiation and short-term exposure treatments in determining phenolic concentrations; however, the effects were inconsistent during and among growing seasons. Concentration of phenolic compounds responded rapidly to sudden changes in weather patterns (passing cold fronts) that were usually associated with significant decrease in solar radiation intensity and temperature. Solar radiation intensity was positively correlated with total phenolic concentration and explained 62% to 72% of the variation in total phenolic concentration. Correlation between temperature and total phenolic concentration varied among growing seasons and explained 9–17% of the variation in total phenolic concentration. Results suggest that phenolic concentration in wheat forage is correlated with solar radiation. The decrease in phenolic concentration and resulting increase of bloat potential are especially pronounced during sudden changes in weather patterns during winter.

Publisher

Polish Botanical Society

Subject

Plant Science,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3