Author:
Adel Kadri,Amor Mosbah,Alaeddine Redissi,Emira Noumi,Mousa Alreshidi,Kaïss Aouadi,Siwar Ghannay,Jamal Siddiqui Arif,Mohd Adnan,De Feo Vincenzo,Mejdi Snoussi
Abstract
Due to the emergency and uncontrolled situation caused by the COVID-19 pandemic that arising in the entire world, it is necessary to choose available drugs that can inhibit or prevent the disease. Therefore, the repurposing of the commercial antibiotic, dirithromycin has been screened for the first time against fifteen receptors and compared to the azithromycin using a molecular docking approach to identify possible SARS-CoV-2 inhibitors. Our docking results showed that dirithromycin fit significantly in the Furin catalytic pocket having the lowest binding score (-9.9 Kcal/mol) with respect to azithromycin (-9.4 Kcal/mol) and can interact and block both Asp154 and Ser368 residues by Van der Walls interaction as well as bound to His194 and Ser368 residues via hydrogen bonds. Good results were also obtained with the Tmprss-2 receptor. A Molecular Dynamic simulation was assessed to confirm this interaction. Additionally, detailed receptor-ligand interactions with SARS-CoV-2 and pro-inflammatory mediators were investigated suggesting more target information with interesting results. The findings of this study are very efficient and provide a basis for the development of dirithromycin for clinical trial applications to be efficient in treating SARS-CoV-2 infections.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献