Comprehensive multi-factor analysis and exploration for the pathogenesis of non-ischemic cardiomyopathy and ischemic cardiomyopathy

Author:

Li Fengling,Cheng Lin,Ma Lin

Abstract

Cardiomyopathy is a group of heterogeneous diseases that negatively affect cardiac function. Twenty-five years ago, clinical researchers began to realize that cardiomyopathy is an important and fairly common heart disease. Although many aspects of the pathogenesis of cardiomyopathy have been explored by biologists, the molecular mechanisms remain elusive. This study modularized the pathogenesis of non-ischemic cardiomyopathy and ischemic cardiomyopathy and finally explored their common core pathogenic driver genes. First, based on the normal expression profile data of patients with non-ischemic cardiomyopathy and ischemic cardiomyopathy, differential expression analysis was used to screen differentially expressed genes. Secondly, the co-expression analysis of differentially expressed genes was performed to obtain a co-expression module of genes. Thirdly, the enrichment analysis of GO functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was conducted on the module genes. Finally, based on hypergeometric tests, non-coding RNA (ncRNA) and transcription factors with significant regulatory effects were predicted. In summary, we obtained 8 co-expression modules, of which HN1, PRDX3 genes had significant differences in expression in patients with cardiomyopathy, and had a positive regulatory role in the dysfunction module, so they were recognized as non-ischemic and key genes for non-ischemic diseases and ischemic cardiomyopathy. The enrichment results showed that the module genes were significant in the biological processes of neutrophil activation involved in immunoreaction, neutrophil-mediated immunity, neutrophil activation, and neutrophil degranulation, and significantly regulate the signal pathways such as vibrio cholerae infection. Finally, significant regulatory dysfunction modules of pivot ncRNAs (including MALAT1, miR-133a-3p, and miR-133b) and pivot TFs (including NFKB1, PML, and RELA, etc.) were identified. In summary, our work decodes a co-expression network involving the regulation of key genes in non-ischemic and ischemic cardiomyopathy. It helps to discover core dysfunction modules and potential regulatory factors, drive disease genes, and improve our understanding of its pathogenesis.

Publisher

CMB Association

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3