Potential regulatory factors in the pathogenesis of ankylosing spondylitis

Author:

Liu Hongxi,Zhou Jun,Bi Junwei,Yang Wenbo

Abstract

Ankylosing spondylitis (AS) is a chronic rheumatic disease that mainly affects the spinal joints (vertebrae). Spondylitis means inflammation of the spine, and ankylosing spondylitis means that bones tend to fuse. The AS causes the vertebrae to swell in the spine. Therefore, based on protein interaction network analysis, we conducted in-depth research on the molecular mechanism of key regulatory factors in the AS disease process. We carried out a differential analysis of the expression of miRNAs in disease samples and miRNAs in normal samples. Protein network interaction analysis is performed according to a group of target genes regulated by significant differentially expressed miRNAs and clustered into an interaction module. In addition, enrichment analysis of functions and pathways was performed on these modular genes. Based on the predictive analysis of multidimensional regulators, we identified a range of regulatory factors that have potential regulatory effects on AS, such as endogenous genes and transcription factors. We obtained 20 differentially expressed miRNAs and 7082 target genes and clustered into 11 modules. Enrichment results showed that these modular genes are mainly involved in the functions and pathways of protein polyubiquitination, neutrophil activation involved in immune response, and Wnt signaling pathway. We revealed ten transcription factors (MYC, NFKB1, and TP53). After network connectivity analysis, we obtained 12 internal drive genes (UBE2D1, CCNF, and NEDD4). These core genes are thought to be potential regulators of AS. MYC is also considered to be a core factor that inhibits SART3 phosphorylation and plays a vital role in the immunological pathogenesis of AS. The combination of the above analysis results can provide a new idea for biologists and medical scientists to study the immune pathogenesis of AS and can provide a valuable reference for subsequent treatment options.

Publisher

CMB Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3