Influence of medium composition and physical factors on enhanced production of endoglucanase by locally isolated fungal strain in solid state fermentation

Author:

Abdullah Roheena,Javed Peracha Bakhtawar,Nisar Kinza,Iqtedar Mehwish,Kaleem Afshan,Iftikhar Tehreema,Saleem Faiza,Naz Shagufta

Abstract

Endoglucanase is one of the most important enzymes of the cellulase group.  Endoglucanase are involved in the catalytic hydrolysis of cellulose and plays a pivotal role in different sectors like pharmaceutical, textile, detergent, and food processing as well as paper and pulp industry. With consumers getting more and more aware of environmental issues, industries find enzymes as a better option over other chemical catalysts. In the current research different thermophilic fungal strains were isolated from the different sources. Qualitative screening was carried out on the basis of cellulose hydrolysis zone. The quantitative screening was carried out employing solid state fermentation.  The fungal culture, showing highest EG potential was selected identified and assigned the code Aspergillus fumigatus BBT2. Different fermentation media were evaluated and M 2 containing wheat bran gave maximum EG production. The maximal enzyme productivity was recorded in 72 hours, 40°C, pH 5, inoculum size 1.5ml, and moisture content (1:1). Glucose (1%) and peptone (1%) were optimized as best carbon and nitrogen sources, respectively.

Publisher

CMB Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3