MiR-637 suppresses melanoma progression through directly targeting P-REX2a and inhibiting PTEN/AKT signaling pathway

Author:

Zhang Jian,Liu Wen-Li,Zhang Lu,Ge Rui,He Fang,Gao Tian-Yuan,Tian Qiong,Mu Xin,Chen Li-Hong,Chen Wei,Li Xu

Abstract

MicroRNAs (miRNAs) play important roles in melanoma. Although miR-637 has been suggested to be a tumor suppressor in several cancers, its function in melanoma and the molecular mechanism behind that function remain unclear. In this study, we investigated the role of miR-637 in human melanoma and explored its relevant mechanisms. We found that the expression of miR-637 is significantly downregulated in melanoma tissues and cell lines. While overexpression of miR-637 inhibited melanoma cell proliferation and cell cycle G1-S transition, and induced apoptosis. Inhibition of miR-637 promoted cell proliferation and G1-S transition, and suppressed apoptosis. Subsequent investigation revealed that miR-637 expression was inversely correlated with P-REX2a expression in melanoma tissues. P-REX2a was determined to be a direct target of miR-637 by using a luciferase reporter assay. Overexpression of miR-637 decreased P-REX2a expression at both the mRNA and protein levels, and suppression of miR-637 increased P-REX2a expression. Importantly, silencing P-REX2a recapitulated the cellular and molecular effects seen upon miR-637 overexpression, whereas, overexpression of P-REX2a eliminated the effects of miR-637 overexpression on melanoma cells. Furthermore, both enforced expression of miR-637 or silencing of P-REX2a resulted in activation of PTEN, leading to a decline in AKT phosphorylation. Taken together, our study demonstrates that miR-637 inhibites melanoma cell proliferation by activation of AKT signaling pathway and induces apoptosis through regulation of Bcl-2/Bax expression via targeting P-REX2a. These findings suggest that miR-637 plays a crucial role in melanoma progression, and may serve as a potential novel target for melanoma therapy.

Publisher

CMB Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3