Dissolved Gas Analysis of Insulating Oil for Power Transformer Fault Diagnosis with Bayesian Neural Network

Author:

Abstract

Dissolved gas analysis is widely used for preventative maintenance techniques and fault diagnoses of oil-immersed power transformers. There are also various conventional methods of dissolved gas analysis for insulating oil in power transformers including methods of Doernenburg ratios, Rogers ratios and Duval’s triangle. The Bayesian techniques have been developed over many years and applied to a range of different fields including the problem of training in artificial neural networks. In particular, the Bayesian approach can solve the problem of over-fitting of artificial neural networks after being trained. The Bayesian framework can be also utilised to compare and rank different architectures and types of artificial neural networks. This research aims at deploying a detailed procedure of training artificial neural networks with the Bayesian inference, also known as Bayesian neural networks, to classify power transformer faults based on Doernenburg and Rogers gas ratios. In this research, the IEC TC 10 databases were used to form training and test data sets. The results obtained from the performance of trained Bayesian neural networks show that despite the limitation of the available dissolved gas analysis data, Bayesian neural networks with an appropriate number of hidden units can successfully classify power transformer faults with accuracy rates greater than 80%.

Publisher

Hanoi University of Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3