Homology modeling of actin protein in Leishmania donovani and in silico prediction of active drugs

Author:

Bansal Dimpal Rani1,Patil Hanumanthrao Chandershekar1,Patil Rajesh Kumari1

Affiliation:

1. Department of Pharmaceutical Sciences, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India,

Abstract

Objectives: Leishmaniasis is a disease caused by leishmania parasite which is genus of trypanosome protozoa. Leishmania donovani promastigote inhibits biogenesis of phagolysosome due to the accumulation of periphagosomal F-actin. This inhibition of phagosome maturation gives favorable environment for differentiation of promastigote-to-amastigote and causes disease progression. L. donovani actin (LdACT) has been found to have unconventional biochemical behavior due to the different amino acid region in its sequence suggesting that it must have a three-dimensional (3D) structure different from eukaryotic actins making it a more specific for predication of antileishmanial drugs which is main objective of this study. Material and Methods: For carrying out this study, protein sequence was retrieved from the database SWISSPROT, analyzed by BIOEDIT software followed by primary and secondary structure prediction by PROTPARAM and SOPMA. A 3D structure of same was constructed by homology modeling using the yeast actin-human gelsolin segment 1 complex (protein data bank [PDB] ID:1yag) as a template with the help of Swiss model. The final model obtained was further accessed by PROCHECK and VERIFY 3D software which ensured the reliability of the model. This model of actin protein was further used for screening different chemical compounds with high binding affinity by GOLD and DISCOVERY STUDIO. Results: The results give information about the some inhibitors having highest binding affinity to the actin protein. Conclusion: This study will be useful for the development of pharmacophore models for in silico predication of active drugs as a part of antileishmanial drug therapy.

Publisher

Scientific Scholar

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3