Evaluation of the accuracy and reliability of WebCeph – An artificial intelligence-based online software

Author:

Katyal Deepika1,Balakrishnan Nivethigaa1

Affiliation:

1. Department of Orthodontics, Saveetha Dental College, Chennai, Tamil Nadu, India,

Abstract

Objectives: Landmark identification is of utmost importance in cephalometric analysis but it turns out to be the main source of error. With modern inventions in the field of artificial intelligence (AI), it becomes essential to assess the reliability of computer-automated programs. A greater deal of time can be conserved with fully automated programs such as WebCeph, which uses an AI-based algorithm that performs automated and immediate cephalometric analysis. This study aimed to evaluate the accuracy, reliability, and duration of tracing cephalometric radiographs with WebCeph, an AI-based software in comparison to digital tracing with FACAD and manual tracing. The null hypothesis proposed is that there is no statistically significant difference among the three methods with regard to accuracy of cephalometric analysis. Material and Methods: Pre-treatment cephalometric radiographs of 25 patients (14 males and 11 females, mean age of 18 ± 3.2 years) were selected randomly from the dental information archiving software of Saveetha University, Department of Orthodontics, Chennai. Composite analysis with skeletal, dental and soft-tissue parameters was selected and cephalometric analysis was done with all three methods – Manual tracing (Group 1), digital tracing using FACAD (Group 2), and fully automated AI-based software WebCeph (Group 3). The timing for each method of analysis was calculated using a stopwatch in seconds. Values were tabulated in an Excel sheet and statistical analysis including one-way analysis of variance and post hoc Tukey test were performed. Results: No statistically significant difference was found between the three methods for cephalometric analysis, P > 0.05. The time taken for measurement using the three different methods was the least while using WebCeph (30.2 ± 6.4 s) and the maximum while manual tracing (472 ± 40.4 s). Conclusion: WebCeph is a reliable, faster and practical tool for analyzing cephalometric analysis in comparison to digital tracing using FACAD and manual tracing.

Publisher

Scientific Scholar

Subject

Orthodontics

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3