An analysis of transcranial doppler to interpret changes in cerebral circulation under +Gz

Author:

Dinakar S1,Agarwal A2

Affiliation:

1. Specialist in Aerospace Medicine, Department of Acceleration Physiology and Spatial Orientation, Institute of Aerospace Medicine IAF, Bengaluru, India,

2. Specialist in Aerospace Medicine and Commandant, Institute of Aerospace Medicine IAF, Bengaluru, India,

Abstract

Introduction: The use of Transcranial Doppler (TCD) to measure the cerebral blood flow velocity (BFV) is one of the most elusive tasks under +Gz. The reason for this is the technical difficulty in keeping the TCD fixed during acceleration. There is no conclusive principle of the behavior of cerebral blood vessels under +Gz, despite earlier attempts in animal/human studies. In our study, we were able to overcome the technical difficulty and record the cerebral BFV of the middle cerebral artery under +Gz. Material and Methods: Twenty healthy adult males consented to participate in the study. High-performance human centrifuge was used to subject them to +Gz acceleration. The participants were instrumented with electrocardiography, thermistor bead, oxygen saturation probe, non-invasive blood pressure and TCD probe. Relaxed peripheral light loss (PLL) and straining PLL were recorded in a single gradual-onset rate profile. Results: The TCD data were retrieved and the data was plotted. The Doppler waveform varied with a change in +Gz. Pulsatility (Gosling) index was derived. The index increases as Gz level builds up, indicating an increase in arterial resistance. This increase was statistically significant. Conclusion: The understanding, so far, has been based on a presumption of vasoconstriction in the cerebral arteries. However, when monitoring TCD against increasing +Gz, it is not the presence or absence of the waveform that is of significance; however, it is the change in the pattern of the waveform that is noteworthy.

Publisher

Scientific Scholar

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Handheld Sonographic Cardiovascular Imaging Under Hypergravity Conditions;Aerospace Medicine and Human Performance;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3