Mitochondrial protein isoleucyl-tRNA synthetase 2 in tumor cells as a potential therapeutic target for cervical cancer

Author:

Meng Xiaojiao1,Gao Bo1,Li Ning1

Affiliation:

1. Department of Ultrasonic, Zibo Central Hospital, Shandong, China,

Abstract

Objective: Isoleucyl-tRNA synthetase 2 (IARS2) is crucial for mitochondrial activity and function in cancer cells. Cervical cancer is a highly prevalent malignancy affecting the female reproductive system on a global scale. This research investigates the expression and potential roles of IARS2 in cervical cancer cells. Material and Methods: Initially, we examined the IARS2 expression profile in cervical cancer cells using Western blot technique and quantitative reverse transcription polymerase chain reaction methodologies. Subsequently, cervical cancer cell models with IARS2 silencing and overexpression were constructed using Short Hairpin RNA (ShRNA) (IARS2) and pcMV-FLAG-IARS2, respectively. The impact of IARS2 silencing or overexpression on Hela cell mitochondrial membrane potential, mitochondrial complex I, adenosine triphosphate (ATP) levels, reactive oxygen species activity, viability, proliferation, migration, apoptosis-related proteins, and apoptosis levels was examined through fluorescence staining, enzyme-linked immunosorbent assay, cell counting kit-8 assay, Transwell experiments, Western blot technique, and Terminal deoxynucleotidyl transferase dUTP nick end labeling assay techniques. Results: The expression of IARS2 is upregulated in cervical cancer cells. Silencing IARS2 with ShRNA (IARS2) disrupts mitochondrial function in cervical cancer cells, resulting in mitochondrial depolarization, heightened oxidative stress, suppression of mitochondrial complex I, and a decrease in ATP levels. Moreover, the depletion of IARS2 significantly impedes the viability, proliferation, and migration of cervical cancer cells, inducing apoptotic processes. In contrast, the overexpression of IARS2 augments the proliferation, migration, and ATP levels in cervical cancer cells. Conclusion: IARS2 plays a pivotal role as a mitochondrial protein in fostering the growth of cervical cancer cells, presenting itself as an innovative target for tumor diagnosis and treatment.

Publisher

Scientific Scholar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3