Inhibition of CXCR2 as a therapeutic target for chronic post-surgical pain: Insights from animal and cell models

Author:

Zhao Jiacheng1,Jian Chenlu1,Chen Zhusheng1,Cai Jiapei1,Zhou Can1,Li Ming1,Yang Yang2,Gao Yongtao1

Affiliation:

1. Deapartment of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, The People’s Republic of China,

2. Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, The People’s Republic of China,

Abstract

Objective: Studies have shown that chemokines can stimulate the migration and activation of microglia to cause chronic post-surgical pain (CPSP). However, the involvement of C-X-C motif chemokine receptor 2 (CXCR2) as a new chemotactic factor in regulating CPSP and its underlying mechanism remains unclear. This study is to investigate the role of CXCR2 in the development of CPSP and reveal the underlying mechanism. Material and Methods: A rat model of skin/muscle incision and retraction was established, and treated with or without SB225002 (a selective inhibitor of CXCR2). In addition, the primary microglia cells induced by lipopolysaccharide were applied as an in vitro model for CPSP and treated individually with si-negative control (NC), si-CXCR2, si-CXCR2+Interleukin (IL)-6 (an agonist of the janus kinase (JAK)/signal transducers and activators of transcription (STAT)3 signaling pathway), si-CXCR2+IL-6+si-NC, or si-CXCR2+IL-6+si-exchange protein 1 directly activated by cAMP (EPAC1). Results: Results from the database analysis showed that CXCR2 and JAK/STAT3 signaling pathway-related genes, including JAK1, STAT3, and EPAC1, were mainly involved in the development of CPSP. Inhibition of CXCR2 expression not only inhibited the reduction of foot pain threshold in CPSP models but also led to a decreased expression of CXCR2 and the phosphorylation levels of JAK and STAT3 in both animal and cell models. Furthermore, inhibition of EPAC1 expression can hinder the regulatory function of CXCR2. Conclusion: This study indicated that the high expression of CXCR2 activates the JAK1/STAT3 signaling pathway, enhances EPAC1 activation in microglial cells, and exacerbates CPSP.

Publisher

Scientific Scholar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3