Identification of novel somatic cell-free DNA variants by next-generation sequencing in breast cancer patients

Author:

Raghu Aarthy1,Balaiah Meenakumari1,Veluswami Sridevi2,Sundersingh Shirley3,Thangarajan Rajkumar1,Mani Samson1

Affiliation:

1. Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India,

2. Department of Surgical Oncology Cancer Institute WIA, Chennai, Tamil Nadu, India,

3. Department of Oncopathology, Cancer Institute WIA, Chennai, Tamil Nadu, India,

Abstract

Objectives: Breast cancer is a heterogeneous disease affecting women worldwide and is one of the leading causes of mortality in India. Sampling bias due to tumor heterogeneity and invasive nature of biopsies necessitate noninvasive methods for comprehensive tumor profiling. Circulating cell-free DNA presents a complete mutation profile of the tumor, enabling the non-invasive monitoring of disease in real-time. This study aimed to identify tumor-specific variants in cfDNA with potential applications in the liquid-biopsy based testing of breast cancer. Material and Methods: Next-generation sequencing was performed for cell-free DNA, lymphocyte DNA, and tumor DNA from 21 breast cancer patients. Variant calling was performed using Torrent Suite Server v.5.0 and somatic variants were annotated using web-based tools. Pathogenic variants detected in cell-free DNA and tumor DNA of three patients were validated by Sanger sequencing. Results: Fifty-nine somatic variants were detected in the cell-free DNA of 10 breast cancer patients. Hotspot variants were detected in PIK3CA, TP53, and KRAS genes. In addition, previously unreported missense variants in ABL1 and PIK3CA genes were predicted to be pathogenic and potential driver mutations. Several frameshift indels were detected in two triple negative breast cancer patients. Conclusion: Sequencing of cell-free DNA from breast cancer patients identified somatic variants including several potentially pathogenic variants which have not been reported previously. These variants may have potential applications as non-invasive biomarkers for breast cancer.

Publisher

Scientific Scholar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3