Signaling pathways in pancreatic ductile adenocarcinoma and potential therapeutic targets

Author:

McHugh Michael A.1,Ngo Nealie T.1,Mitchell Anthony C.1,Morand Susan M.1,Mack Sean T.1,Kaur Punit1,Asea Alexzander12

Affiliation:

1. Precision Therapeutics Proteogenomics Diagnostics Center, Department of Medicine, Division of Hematology/Oncology, Eleanor N. Dana Cancer Center, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States,

2. NampEVA BioTherapeutics, LLC, Dover, Delaware, United States,

Abstract

Pancreatic ductile adenocarcinoma (PDAC) has a dismal prognosis, with an overall 5-year survival of <10%. At present, PDAC is treated using systemic chemotherapeutic regimens, which have shown survival benefit in clinical trials. Unfortunately, the survival benefit offered by the current standards do not greatly impact the 5-year overall survival statistics with the disease and are associated with toxicity. The large majority of PDACs are associated with a mutation in Kirsten Ras (KRAS), which results in constative activation of downstream signaling resulting in oncogenesis, tumor progression, cellular survival, and metastasis. Due to the lack of druggable sites, designing direct KRAS inhibitors have proven difficult and extensive effort has been placed in finding upstream or downstream targets as potential therapeutic avenues. The epidermal growth factor receptor (EGFR), hedgehog (HH), and mTOR signaling pathways have all gained recent attention as potential candidates for targeted PDAC therapies. Erlotinib, an EGFR small-molecule inhibitor, has shown promise in preclinical studies against PDAC. It is currently the only Food and Drug Administration (FDA) approved targeted therapy for PDAC when used in conjunction with gemcitabine. However, clinical trials comparing erlotinib plus gemcitabine to gemcitabine alone have demonstrated only modest statistical significance in overall survival. Due to the unique hypovascular microenvironment in PDAC, designated by the term desmoplasia, the HH signaling pathway has also gained recent research interest. Recent studies have shown lithium, a divalent cation originally FDA approved for bipolar disorder, to inhibit PDAC progression through its mechanism of glycogen synthase 3 inhibition in the HH pathway. Metformin, a biguanide medication used in type II diabetes mellitus, has been shown to inhibit mammalian target of rapamycin complex 1 (mTORC1) signaling indirectly through its activation of AMPK. Preclinical studies have demonstrated tumor regression, induction of apoptosis, and effects on the microenvironment in PDAC through the inhibition of mTORC1 by metformin. We present compelling scientific rationale, based on unique signal transduction pathways, tumor pathophysiology, and therapeutics potential for the combination of erlotinib, lithium, and metformin for the treatment of PDAC.

Publisher

Scientific Scholar

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3