Affiliation:
1. Department of Neuroanesthesia and Critical Care, National Institute for Neurology and Neurosurgery, University College of London NHS Hospital Trust, London, United Kingdom,
2. Department of Neuroanesthesia and Critical Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India,
3. Department of Biostatics, University of Kerala, Thiruvananthapuram, Kerala, India,
4. Department of Chemistry and Biochemistry, University of Maryland, Baltimore, United States,
Abstract
Objectives:
During anesthesia, the response to these stimuli depends on the balance between nociception and antinociception. Recently, various monitoring systems based on the variables derived from electroencephalography, plethysmography, autonomic tone, reflex pathways, and composite algorithms have been introduced for monitoring nociception. The main aim of our study was to evaluate and correlate the physiological variables which reflect the autonomic nervous system response to nociception, such as heart rate (HR), systolic blood pressure (SBP), perfusion index (PI), and nociceptive response index (NRI), with the spectral entropy indices response entropy (RE) and RE-state entropy (SE), which reflects electromyographic (EMG) activation as a response to pain.
Materials and Methods:
This is a retrospective analysis of the data from a prospective study on the hypnotic and analgesic effects and the recovery profile of sevoflurane-based general anesthesia. Eighty-six patients undergoing single-agent sevoflurane anesthesia were recruited in the study. The study parameters, HR, SBP, SE, RE, RE-SE, PI, and NRI, were recorded at predefined time points before and after a standardized noxious stimulus. Correlation between the variables was carried out by applying the Pearson correlation equation for normal and the Spearman correlation equation for non-normally distributed data. Receiver operating characteristic (ROC) graphs were plotted, and the area under the curve was calculated to assess the diagnostic accuracy of post-stimulus NRI in detecting pain which was defined as RE-SE >10.
Results:
There was a significant increase in the SBP, HR, NRI, RE, SE, and RE-SE and a considerable decrease in PI values during the post-noxious period compared to the pre-noxious period. There was no correlation between the absolute values of NRI and entropy indices at T2. However, among the reaction values, there was a weak correlation between the reaction values of NRI and RE (r = 0.30; P = 0.05). The area under the ROC curve for NRI to detect pain as defined by RE-SE >10 was 0.56.
Conclusion:
During sevoflurane anesthesia, the application of noxious stimulus causes significant changes in variables reflecting sympathetic response and EMG activity. However, NRI failed to detect nociception, and there was only a weak correlation between the reaction values of NRI and RE-SE.
Subject
Neurology (clinical),General Neuroscience