Molecular and qualitative characterization of compatibility between valacyclovir hydrochloride and excipients as raw materials for the development of solid oral dosage formulation

Author:

Mishra Anoop1,Sinha Vivek Ranjan1,Sharma Sumit2,Mathew Alen T.3,Kumar Rajnish3,Yadav Ashok Kumar1

Affiliation:

1. University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India

2. School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, India

3. Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, India,

Abstract

Objectives: The objective of this present study is to know the compatibility of valacyclovir hydrochloride (VCH) with common excipients that would be utilized to develop solid oral dosage forms. Several spectroscopy techniques were used to know the possible interactions of VCH with excipients. More, a molecular docking study was also carried out to see the interaction of VCH with excipients. In vitro study of a physical mixture of VCH with excipients was executed to know the release of a drug. Material and Methods: Several analytical techniques such as differential scanning calorimetry, nuclear magnetic resonance spectrometer, and Fourier-transform infrared (FTIR) spectroscopy have been utilized to know the drug-excipient compatibility. Further, possible interactions between valacyclovir and different excipients were assessed by thin-layer chromatography. In vitro dissolution studies in different sets of experiments were done to determine the influence of the hydrophobic and hydrophilic nature of excipients (on the dissolution profile of VCH using USP II-type dissolving apparatus). Moreover, in silico molecular docking studies were also done to know any possible molecular interactions among drugs and excipients using AutoDock VINA 1.2.0 software and GROMACS 5.0 software. Results: FTIR and 1H NMR spectra of VCH and physical mixtures of VCH and excipients were compared and it was observed that no significant deviation of characteristic peaks in infrared spectroscopy and 1H NMR signals was detected. The endothermic peak of VCH in the physical mixtures of drugs and excipients was found in approximately the same position. In vitro dissolution studies displayed the influence of the hydrophobic and hydrophilic nature of excipients on the dissolution profile of VCH. For the physical mixture of VCH with lactose (LAC) and dicalcium phosphate (DP), % drug release was found to be 31.96% and 33.16% at 10 min, whereas the amount of % drug released for the mixture of VCH and talc was 25.00%. For two other excipients such as LAC and DP, the % drug release was determined to be 42.96% and 41.64%, respectively, for 30 min. The docking study also provided insights into the lowest energy conformations. Docking study anticipated that the number of interactions were more between valacyclovir and LAC (four nos.) in comparison to valacyclovir and microcrystalline cellulose (MCC) (two nos.). This interaction showed that in vitro drug release for the physical mixture of VCH with MCC was higher than a mixture of valacyclovir with LAC. Conclusion: A compatibility study of VCH by analytical techniques established that VCH was compatible with utilized excipients. Drug dissolution of VCH and physical mixture of MCC exhibited the maximum amount of drug release whereas a mixture of VCH with magnesium stearate released the minimum amount of drug for both short (10 min.) and long (30 min.) period. Docking studies disclosed that the LAC complex showed less deviation with less root mean square deviation value in comparison to the microcrystalline complex. Thus, the LAC complex has more hydrogen bonds and it was more stable as compared with the MCC complex. Therefore, VCH and used excipients could be used for solid dose formulations.

Publisher

Scientific Scholar

Reference23 articles.

1. Drug-excipient compatibility studies: First step for dosage form development;Patel;Pharma Innov J,2015

2. An overview of pharmaceutical excipients: Interactions and incompatibilities in dosage form development;Jabeen;Pharma Res J,2022

3. A review on pharmaceutical preformulation studies in formulation and development of new drug molecules;Chaurasia;Int J Pharm Sci Res,2016

4. Preformulation studies: A versatile tool in formulation design;Ahirwar,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3