Affiliation:
1. Department of Zoology, Cairo University, Giza, Egypt,
2. Department of Biochemistery, Cairo University, Giza, Egypt,
Abstract
Objectives:
Type 2 diabetes mellitus (T2DM) is a complex disease that affects many organs. Oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. Thus, the present study aimed to use oxidative stress markers as early predictors for the progression of diabetic complications.
Materials and Methods:
The study sample included 400 individuals (300 T2DM and 100 non-diabetic controls) aged from 35 to 59 years randomly selected from the outpatient clinic of the National Institute for Diabetes and Endocrinology. T2DM patients were divided into subgroups: Subgroup (1) patients without any complications, Subgroup (2) patients with diabetic nephropathy (DN) and Subgroup (3) patients with cardiovascular disorders (CVD). Biochemical markers of fasting blood glucose, glycated haemoglobin (HbA1C), glucose-6-phosphate dehydrogenase (G6PD), lactate, arginase, heme oxygenase-1 (HO-1), haemoglobin (Hb), triglycerides (TG), cholesterol, low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), urea, creatinine, malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT) and nitric oxide (NO) were performed.
Results:
DM patients showed significant increases in body mass index, systolic blood pressure, diastolic blood pressure, FBS, HbA1C, cholesterol, TG, LDL-C and glomerular filtration rate, while HDL-C decreased. Significant increases were observed in HO-1, MDA and NO, while G6PD/lactate, GSH and CAT decreased in DM patients. The DN and CVD patients exhibited a significant increase in HO-1, MDA and NO; while G6PD/lactate, GSH and CAT decreased compared with DM patients. Receiver operating characteristic analysis showed that the sensitivity and specificity of oxidative stress markers were 66.67–100%.
Conclusion:
Hexose monophosphate (HMP)/glycolysis pathways are shifted during DM near glycolysis rather than HMP pathway to produce energy where the amount of glucose enters the cells is low, causing oxidative stress. Oxidative stress markers could be used as early predictors of diabetes complications.
Subject
Physiology (medical),Pharmacology,Physiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献