Exponential modelling of heart rate recovery after a maximal exercise

Author:

Joseph Aneesh1,Kanthakumar Praghalathan2,Tharion Elizabeth3

Affiliation:

1. Department of Physiology, Government Medical College Kollam, Kollam, Kerala, India,

2. Department of Physiology, University of Tennessee Health Science Center, Memphis, United States,

3. Department of Physiology, Christian Medical College, Vellore, Tamil Nadu, India,

Abstract

Objectives: Heart rate recovery (HRR) after exercise is clinically important as a predictor of mortality. In addition, HRR is an indicator of cardiac autonomic activity, since increased vagal activity and diminished sympathetic activity return the heart rate to resting conditions after exercise. The previous attempts to model HRR using polynomial, first-order and second-order modelling have produced mixed results. In this study, we hypothesised that the double-exponential fit would model the HRR more accurately than the single-exponential fit as it would capture the activity of both autonomic arms responsible for heart rate decay and investigated the outcome of these two models on the HRR data following a maximal exercise. Materials and Methods: Exponential curve fitting was done on a set of previously published data from our laboratory. The HRR data were acquired from 40 male participants (19–38 years) after a maximal treadmill exercise. The normalised HRR data from a 5-min time window from maximal heart rate were fitted using single and double-exponential curves, to obtain, respectively, the time constants Tau and, Tau 1 and Tau 2. The goodness-of-fit of the model was assessed with Chi-square values computed for each participant data set with both models. Considering that Chi-square of zero is a perfect fit, and therefore, smaller Chi-square values indicate a better fit than larger values, we computed the difference in the Chi-square values (Δχ2) between the models by subtracting the Chi-square value of the double-exponential fit from the Chi-square value of the single-exponential fit. This was based on the premise that if the calculated Δχ2 is positive, it would indicate a better fit with double-exponential than single-exponential decay model. The data are presented as mean ± standard deviation. Comparisons were made with Student’s t-test. Results: Data from four participants were excluded for technical reasons. The Tau of the single-exponential fit was 65.50 ± 12.13 s, while Tau 1 and Tau 2 of the double-exponential fit were 43.75 ± 18.96 s and 120.30 ± 91.32 s, respectively, the Tau 1 value being significantly lower than the Tau 2 value (P < 0.0001). Remarkably among the 36 participants, the difference in the Chi-square value was positive (127.2 ± 171.04) in 22 subjects and zero or marginally negative (−0.17 ± 0.31) in 14 subjects. Conclusion: Our results indicate that the double-exponential model fitted the HRR data better than the single-exponential model in almost two-thirds (61%) of our study population. In the remaining participants, the goodness-of-fit was nearly equivalent for both fits with no evidence of superior modelling with the single-exponential fit. Our data show that while the single-exponential fit is sufficient for modelling the HRR of 14 subjects, it was less efficient for fitting the data of most participants. In comparison, the double-exponential curve fit effectively modelled 100% of our study population. Given our findings, we conclude that the double-exponential model is more inclusive and better represented the HRR data of our study population than the single-exponential model.

Publisher

Scientific Scholar

Subject

Physiology (medical),Pharmacology,Physiology

Reference23 articles.

1. Pathophysiology of exercise heart rate recovery: A comprehensive analysis;Pierpont;Ann Noninvasive Electrocardiol,2013

2. Heart-rate recovery immediately after exercise as a predictor of mortality;Cole;N Engl J Med,1999

3. Cardiopulmonary fitness and heart rate recovery as predictors of mortality in a referral population;Dhoble;J Am Heart Assoc,2014

4. Post-exercise heart rate recovery: An index of cardiovascular fitness;Dimkpa;J Exerc Physiol Online,2009

5. Heart rate recovery: Validation and methodologic issues;Shetler;J Am Coll Cardiol,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3