Using virtual lines of navigation for a successful transcortical approach

Author:

Omura Naoki,Kawabata Shinji,Yoshimura Kohei,Yagi Ryokichi,Furuse Motomasa,Wanibuchi Masahiko

Abstract

Background: Neuronavigation systems have become essential tools in image-guided neurosurgery that aid in the accurate resection of brain tumors. Recent advancements to these devices can indicate the precise location of lesions but can also project an augmented reality (AR) image on the microscope eyepiece to facilitate a successful surgical operation. Although the transcortical approach is a very popular method in neurosurgery, it can lead to disorientation and can cause unnecessary brain damage when the distance from the brain surface to the lesion is long. Herein, we report on an actual case in which a virtual line from AR images was used to assist the transcortical approach. Methods: A virtual line connecting the entry point and the target point, which were set as the navigation route, was created using Stealth station S7® (Medtronic, Minneapolis, USA). This line was projected as an AR image on the microscope eyepiece. It was possible to reach the target point by proceeding through the white matter along the displayed virtual line. Results: The lesion was reached within a short duration using virtual line without disorientation. Conclusion: Setting a virtual line as an AR image using neuronavigation is a simple and accurate method that can effectively support the conventional transcortical approach.

Publisher

Scientific Scholar

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3