Affiliation:
1. Department of Radiation Oncology, Action Cancer Hospital, New Delhi, India,
Abstract
Objectives:
Image-guided radiotherapy maximizes therapeutic index of brain irradiation by reducing setup errors during treatment. The aim of study was to analyze setup errors in the radiation treatment of glioblastoma multiforme and if decrease in planning target volume (PTV), margin is feasible using daily cone beam CT (CBCT) and 6D couch correction.
Materials and Methods:
Twenty-one patients (630 fractions of radiotherapy) were studied in which corrections were made in 6° of freedom. We determined setup errors, impact of setup errors of initial three fractions CBCT versus rest of the treatment with daily CBCT, and mean difference in setup errors with or without application of 6D couch and volumetric benefit of reduction of PTV margin from 0.5 cm to 0.3 cm.
Results:
The mean shift in the conventional directions, namely, vertical, longitudinal, and lateral was 0.17 cm, 0.19 cm, and 0.11 cm. There was significant change in vertical shift when first three fractions were compared with rest of the treatment with daily CBCT. When the effect of 6D couch was nullified, all directions showed increased error with longitudinal shift being significant. The number of setup errors of magnitude >0.3 cm was more significant when only conventional shifts were applied as compared with 6D couch. There was significant decrease in volume of brain parenchyma irradiated when margin of PTV was reduced from 0.5 cm to 0.3 cm.
Conclusion:
Daily CBCT along with 6D couch correction can reduce setup error which allows reduction in PTV margin during radiotherapy planning in turn improving the therapeutic index.
Subject
Neurology (clinical),General Neuroscience