A comprehensive compatibility study of ganciclovir with some common excipients

Author:

Mishra Anoop1,Sinha Vivek Ranjan1,Sharma Sumit2,Mathew Alen T.3,Kumar Rajnish3,Yadav Ashok Kumar1

Affiliation:

1. University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India

2. Department of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Delhi, India

3. Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Uttar Pradesh, India,

Abstract

Objectives: The aim of the present study is to illustrate compatibility testing of ganciclovir (GCV) with some common excipients that would be used to manufacture solid oral dosage forms. Different spectroscopy techniques were utilized to see the interaction of GCV with excipients such as lactose, microcrystalline cellulose (MCC), magnesium stearate, and talc, and dicalcium phosphate. Further, a molecular docking study was also done to know the interaction of GCV with excipients. In vitro study of a physical mixture of GCV with excipients was performed to get the release of drug. Material and Methods: A number of analytical techniques (differential scanning calorimetry [DSC] using DSC-Q20, TA instruments, Fourier-transform infrared spectroscopy [FTIR] spectroscopy using Spectrum RX 1, nuclear magnetic resonance [NMR] using Bruker Advance Neo 500 MHz NMR spectrometer, etc.) have been used to explore the drug-excipient compatibility. Further, a suspected interaction was evaluated by thin-layer chromatography (TLC). In vitro dissolution studies in different sets of experiments were accomplished to determine the influence of hydrophobic and hydrophilic attributes of excipients (MCC, lactose, dicalcium phosphate, and talc) on the dissolution profile of GCV using USP1-type dissolution apparatus. Furthermore, in silico molecular docking studies were also performed to evaluate any probable molecular interactions among drugs and excipients using Auto Dock VINA 1.2.0 software and GROMACS 5.0 software. Results: Comparing FTIR and 1H NMR spectra of GCV and physical mixtures of GCV and excipients, no significant deviation of characteristic peaks in infrared spectroscopy and 1H NMR signals was observed. The DSC of GCV showed two sharp endothermic peaks at 238.82°C and 255°C. The endothermic peak of GCV in DSC thermogram of physical mixtures was observed in nearly the same position except with lactose and dicalcium phosphate. A slightly deviated peak of GCV with a physical mixture of drug and lactose and dicalcium phosphate indicated that there were suspected interactions between the drug with lactose and dicalcium phosphate. These interactions were evaluated by thin-layer chromatography (TLC) and it confirmed that there was no interaction between drugs and excipients. In vitro dissolution studies determined the influence of hydrophobic and hydrophilic attributes of excipients on the dissolution profile of GCV. The physical mixture of GCV with MCC displayed a maximum amount (66.48%) of drug release in 10 min. On the other hand, a physical mixture of GCV with talc showed a minimum amount (12.08%) of drug release in 10 min. Docking study predicted that the number of interactions were more between GCV and lactose (four nos.) in comparison to GCV and MCC (two nos.). This interaction supported the in vitro drug release of a physical mixture of GCV with MCC which was higher than a mixture of GCV with lactose. Conclusion: Compatibility testing of GCV with used excipients by analytical techniques confirmed that GCV should be compatible with used excipients. Drug dissolution of GCV and physical mixture of MCC exhibited the maximum amount of drug release whereas a mixture of GCV with talc released the minimum amount of drug for both short (10 min.) and long (60 min.) periods. Docking studies disclosed that the lactose complex showed less deviation with less root mean square deviation value in comparison to the microcrystalline complex. Thus, the lactose complex has more hydrogen bonds and it was more stable as compared with the MCC complex. GCV indicates that the total energy of the MCC complex is less than that of the lactose complex. This indicates that GCV is more soluble when combined with the microcrystalline complex. Therefore, GCV and used excipients could be used for solid dosage formulations.

Publisher

Scientific Scholar

Reference23 articles.

1. Drug-excipient compatibility studies: First step for dosage form development;Patel;Pharma Innov,2015

2. An overview of pharmaceutical excipients: Interactions and incompatibilities in dosage form development;Jabeen;Pharm Res J,2022

3. Excipient applications in formulation design and drug delivery;Narang;Germany: Springer;,2015

4. Drug-excipient compatibility assessment of solid formulations containing meloxicam;Da Silveira;Eur J Pharm Sci,2018

5. Development of an analytical UHPLC method for the estimation of cyclosporine in SMEDDS and protein binding;Sharma;Am J Mod Chromatogr,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3