Author:
Schneider Martin,Gläser Dennis,Flemisch Bernd,Helmig Rainer
Abstract
We present an abstract discretization framework and demonstrate that various cell-centered and hybrid finite-volume schemes fit into it. The different schemes considered in this work are then analyzed numerically for an elliptic model problem with respect to the properties consistency, coercivity, extremum principles, and sparsity. The test cases presented comprise of two- and three-dimensional setups, mildly and highly anisotropic tensors and grids of different complexities. The results show that all schemes show a similar convergence behavior, except for the two-point flux approximation scheme, and seem to be coercive. Furthermore, they confirm that linear schemes, in contrast to nonlinear schemes, are in general neither positivity-preserving nor satisfy discrete minimum or maximum principles.
Funder
The authors would like to thank the German Research Foundation (DFG) for funding this work within SFB 1313
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献