Predictive models for density correction factor of natural gas and comparison with standard methods

Author:

Bashipour Fatemeh,Hojjati Behnaz

Abstract

Two intelligent-based models which do not require complete gas compositions are presented to estimate natural gas density correction factor using comprehensive datasets (nearly 60 000 instances) originating from the AGA8-DCM (Detail Characterization Method) standard: (1) NGDC-ANN model (Natural Gas Density Calculator based on Artificial Neural Network) and (2) AGA8-GCMD model (Gross Characterization Method Developed by applying genetic algorithm technique). In the suggested models, only five input variables (specific gravity at base condition, operating temperature and pressure and molar composition of CO2 and N2) are employed. The experimental datasets obtained from this work (68 instances) and literature (505 instances) are applied to validate the developed model showing a very good agreement between experimental and estimated data. Simplicity, improving accuracy and satisfactory results of the suggested models over a wide range of operational conditions show that these models would be excellent alternatives for the traditional standard methods, so that, the NGDC-ANN model prediction besides of its simplicity to use show the highest accuracy over a wide of operational range in comparison to similar models.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference40 articles.

1. A novel method for calculating natural gas density based on Joule Thomson coefficient

2. Froysa K.E., Lunde P. (2005) Density and calorific value measurement in natural gas using ultrasonic flow meters, 23rd International North Sea Flow Measurement Workshop, 18–21 October 2005, Norway.

3. Viscosity and Density Correlations for Hydrocarbon Gases and Pure and Impure Gas Mixtures

4. A soft computing approach for prediction of P- ρ-T behavior of natural gas using adaptive neuro-fuzzy inference system

5. Hammond R.H. (2001) Ultrasonic measurement system with molecular weight determination, Patent US6216091B1.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3