Author:
Bashipour Fatemeh,Hojjati Behnaz
Abstract
Two intelligent-based models which do not require complete gas compositions are presented to estimate natural gas density correction factor using comprehensive datasets (nearly 60 000 instances) originating from the AGA8-DCM (Detail Characterization Method) standard: (1) NGDC-ANN model (Natural Gas Density Calculator based on Artificial Neural Network) and (2) AGA8-GCMD model (Gross Characterization Method Developed by applying genetic algorithm technique). In the suggested models, only five input variables (specific gravity at base condition, operating temperature and pressure and molar composition of CO2 and N2) are employed. The experimental datasets obtained from this work (68 instances) and literature (505 instances) are applied to validate the developed model showing a very good agreement between experimental and estimated data. Simplicity, improving accuracy and satisfactory results of the suggested models over a wide range of operational conditions show that these models would be excellent alternatives for the traditional standard methods, so that, the NGDC-ANN model prediction besides of its simplicity to use show the highest accuracy over a wide of operational range in comparison to similar models.
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Reference40 articles.
1. A novel method for calculating natural gas density based on Joule Thomson coefficient
2. Froysa K.E., Lunde P. (2005) Density and calorific value measurement in natural gas using ultrasonic flow meters, 23rd International North Sea Flow Measurement Workshop, 18–21 October 2005, Norway.
3. Viscosity and Density Correlations for Hydrocarbon Gases and Pure and Impure Gas Mixtures
4. A soft computing approach for prediction of P- ρ-T behavior of natural gas using adaptive neuro-fuzzy inference system
5. Hammond R.H. (2001) Ultrasonic measurement system with molecular weight determination, Patent US6216091B1.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献