Modeling of transient shape factor in fractured reservoirs considering the effect of heterogeneity, pressure-dependent properties and quadratic pressure gradient

Author:

Abbasi MahdiORCID,Kazemi AlirezaORCID,Sharifi MohammadORCID

Abstract

Fractured reservoirs contain most of the oil in the world’s reserves. The existence of two systems of matrix and fracture with completely different characteristics has caused the modeling of the mechanisms of fractured reservoirs to be more complex than conventional ones. Modeling of this type of reservoirs is possible using two methods of single and dual porosity model. Modeling via single porosity scheme is very time-consuming as it takes into account huge matrix blocks (low permeability and high porosity) and small fractures (high permeability and low porosity) alongside each other explicitly. The dual porosity model, however, attempts to solve this problem using the concept of shape factor, which is defined as the amount of fluid transferred from the matrix to the fracture. The shape factor coefficients expressed so far have been derived via simplifying assumptions which keep them away from real conditions prevailing in fractured reservoirs. In this paper, shape factor is calculated more realistically with consideration of the quadratic pressure gradient in the diffusivity equation, the heterogeneity of the matrix block and the change of the rock properties by pressure change. For these three cases, the analytical modeling of the flow of fluid from the matrix to the fracture system has been discussed and its results with previous models have been compared. In addition, the dependence of shape factor on the stated parameters was evaluated and in order to validate the results of the proposed analytical model, its results were compared with the results of a commercial simulator. Investigating the shape factor with the assumptions about the physics of the fractured reservoirs will improve our understanding of the fluid transfer between the matrix and the fracture, and this capability will allow numerical and commercial simulators to predict the behavior of fractured reservoirs more accurately.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3