Dual Virtual Element Methods for Discrete Fracture Matrix models

Author:

Fumagalli Alessio,Keilegavlen Eirik

Abstract

The accurate description of fluid flow and transport in fractured porous media is of paramount importance to capture the macroscopic behavior of an oil reservoir, a geothermal system, or a CO2 sequestration site, to name few applications. The construction of accurate simulation models for flow in fractures is challenging due to the high ratio between a fracture’s length and width. In this paper, we present a mixed-dimensional Darcy problem which can represent the pressure and Darcy velocity in all the dimensions, i.e. in the rock matrix, in the fractures, and in their intersections. Moreover, we present a mixed-dimensional transport problem which, given the Darcy velocity, describes advection of a passive scalar into the fractured porous media. The approach can handle both conducting and blocking fractures. Our computational grids are created by coarsening of simplex tessellations that conform to the fracture’s surfaces. A suitable choice of the discrete approximation of the previous model, by virtual finite element and finite volume methods, allows us to simulate complex problems with a good balance of accuracy and computational cost. We illustrate the performance of our method by comparing to benchmark studies for two-dimensional fractured porous media, as well as a complex three-dimensional fracture geometry.

Funder

Norges Forskningsråd

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference55 articles.

1. Berre I., Boon W., Flemisch B., Fumagalli A., Gläser D., Keilegavlen E., Scotti A., Stefansson I., Tatomir A. (2018) Call for participation: Verification benchmarks for single-phase flow in three-dimensional fractured porous media. Technical report, arXiv:1710.00556 [math.AP].

2. Permeability of isotropic and anisotropic fracture networks, from the percolation threshold to very large densities

3. A 3D Computational Study of Effective Medium Methods Applied to Fractured Media

4. Anisotropic effective conductivity in fractured rocks by explicit effective medium methods

5. An upscaling procedure for fractured reservoirs with embedded grids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3