Author:
Ahusborde Etienne,Amaziane Brahim,El Ossmani Mustapha
Abstract
In this paper, we consider a parallel finite volume algorithm for modeling complex processes in porous media that include multiphase flow and geochemical interactions. Coupled flow and reactive transport phenomena often occur in a wide range of subsurface systems such as hydrocarbon reservoir production, groundwater management, carbon dioxide sequestration, nuclear waste repository or geothermal energy production. This work aims to develop and implement a parallel code coupling approach for non-isothermal multiphase multicomponent flow and reactive transport simulation in the framework of the parallel open-source platform DuMuX. Modeling such problems leads to a highly nonlinear coupled system of degenerate partial differential equations to algebraic or ordinary differential equations requiring special numerical treatment. We propose a sequential fully implicit scheme solving firstly a multiphase compositional flow problem and then a Direct Substitution Approach (DSA) is used to solve the reactive transport problem. Both subsystems are discretized by a fully implicit cell-centred finite volume scheme and then an efficient sequential coupling has been implemented in DuMuX. We focus on the stability and robustness of the coupling process and the numerical benefits of the DSA approach. Parallelization is carried out using the DUNE parallel library package based on MPI providing high parallel efficiency and allowing simulations with several tens of millions of degrees of freedom to be carried out, ideal for large-scale field applications involving multicomponent chemistry. As we deal with complex codes, we have tested and demonstrated the correctness of the implemented software by benchmarking, including the MoMaS reactive transport benchmark, and comparison to existing simulations in the literature. The accuracy and effectiveness of the approach is demonstrated through 2D and 3D numerical simulations. Parallel scalability is investigated for 3D simulations with different grid resolutions. Numerical results for long-term fate of injected CO2 for geological storage are presented. The numerical results have demonstrated that this approach yields physically realistic flow fields in highly heterogeneous media and showed that this approach performs significantly better than the Sequential Iterative Approach (SIA).
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Reference73 articles.
1. Niemi A., Bear J., Bensabat J. (2017) Geological storage of CO2 in deep saline formations, Springer.
2. Zhang F., Yeh G.T., Parker J.C. (2012) Groundwater reactive transport models, Bentham e-books
3. Reactive transport codes for subsurface environmental simulation
4. A review of physical modelling and numerical simulation of long-term geological storage of CO2
5. Intergovernmental Panel on Climate Change (IPCC). (2005) IPCC special report on carbon dioxide capture and storage, in: Metz B., Davidson O., de Coninck H.C., Loos M., Loos M., Meyer L.A. (eds.), IPCC special report on carbon dioxide capture and storage, Cambridge University Press. Prepared by Working Group III of the Intergovernmental Panel on Climate Change.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献