Improvement of numerical approximation of coupled multiphase multicomponent flow with reactive geochemical transport in porous media

Author:

Ahusborde Etienne,Amaziane Brahim,El Ossmani Mustapha

Abstract

In this paper, we consider a parallel finite volume algorithm for modeling complex processes in porous media that include multiphase flow and geochemical interactions. Coupled flow and reactive transport phenomena often occur in a wide range of subsurface systems such as hydrocarbon reservoir production, groundwater management, carbon dioxide sequestration, nuclear waste repository or geothermal energy production. This work aims to develop and implement a parallel code coupling approach for non-isothermal multiphase multicomponent flow and reactive transport simulation in the framework of the parallel open-source platform DuMuX. Modeling such problems leads to a highly nonlinear coupled system of degenerate partial differential equations to algebraic or ordinary differential equations requiring special numerical treatment. We propose a sequential fully implicit scheme solving firstly a multiphase compositional flow problem and then a Direct Substitution Approach (DSA) is used to solve the reactive transport problem. Both subsystems are discretized by a fully implicit cell-centred finite volume scheme and then an efficient sequential coupling has been implemented in DuMuX. We focus on the stability and robustness of the coupling process and the numerical benefits of the DSA approach. Parallelization is carried out using the DUNE parallel library package based on MPI providing high parallel efficiency and allowing simulations with several tens of millions of degrees of freedom to be carried out, ideal for large-scale field applications involving multicomponent chemistry. As we deal with complex codes, we have tested and demonstrated the correctness of the implemented software by benchmarking, including the MoMaS reactive transport benchmark, and comparison to existing simulations in the literature. The accuracy and effectiveness of the approach is demonstrated through 2D and 3D numerical simulations. Parallel scalability is investigated for 3D simulations with different grid resolutions. Numerical results for long-term fate of injected CO2 for geological storage are presented. The numerical results have demonstrated that this approach yields physically realistic flow fields in highly heterogeneous media and showed that this approach performs significantly better than the Sequential Iterative Approach (SIA).

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference73 articles.

1. Niemi A., Bear J., Bensabat J. (2017) Geological storage of CO2 in deep saline formations, Springer.

2. Zhang F., Yeh G.T., Parker J.C. (2012) Groundwater reactive transport models, Bentham e-books

3. Reactive transport codes for subsurface environmental simulation

4. A review of physical modelling and numerical simulation of long-term geological storage of CO2

5. Intergovernmental Panel on Climate Change (IPCC). (2005) IPCC special report on carbon dioxide capture and storage, in: Metz B., Davidson O., de Coninck H.C., Loos M., Loos M., Meyer L.A. (eds.), IPCC special report on carbon dioxide capture and storage, Cambridge University Press. Prepared by Working Group III of the Intergovernmental Panel on Climate Change.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3