A numerical well model considering capillary end effect for the low-permeability gas reservoir

Author:

Yao Yu-Min,Shi An-Feng,Wang Xiao-Hong,Liu Zhi-Feng

Abstract

In the recovery of low permeability reservoir, the capillary pressure has an important effect, which may reduce gas production. Due to the capillary end effect, there are two flow patterns in the vicinity of the production well: both water and gas phases can flow into the production well and only gas phase can enter the production well. Based on the analytical equations of one-dimensional radial flow considering the capillary end effect, an alternative numerical well model for low permeability gas reservoir is constructed. Numerical examples show that the proposed model can reflect the dramatic change for saturation and gas-phase pressure in the vicinity of the production well both for two flow patterns, and therefore can predict the gas and water productions accurately at different grid scales. In contrast, the original Peaceman well model for multi-phase flow, which is directly extended from that for single-phase flow, only can provide good prediction under the condition of that the grid size is enough small. Especially, for the original Peaceman well model, this problem is out of control since it is difficult to estimate a suitable grid size.

Funder

National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3