Thermal dissociation of sulfur species: Analyzing variations in corrosivity of different condensate feedstock

Author:

Suleiman Mabruk I.,Rakib Mohammad A.,Kelani Hala,Karakaya Mustafa,Al Musharfy Mohamed,George Abraham,Chandak Nilesh

Abstract

Traditionally, total sulfur content of a crude or condensate feedstock introduced to atmospheric distillation units in a refinery has been used as a measure to predict the high temperature corrosivity of these feeds. Such predictions were also utilized to decide on selection of materials of construction for refinery facilities processing condensate, and many chronic problems, sometimes leading to failure of materials have been reported. In reality, in addition to the total sulfur content, it is important to conduct a profiling of the distribution of the various types of sulfur components in the condensate or crude oil. A pilot plant, mimicking the thermal conditions in a condensate preheat train, was utilized to generate trends of H2S generation under various process conditions. The experimental variables included temperature, pressure, condensate feed rates, and sweep gas flow rates. Yields of H2S generation for the different conditions have been trended for the parametric studies. Such trends were compared for two different condensate feedstock, as a fundamental step towards understanding why different condensate feedstock exhibit significantly different pattern of H2S generation, and hence different corrosivity under similar high temperature processing conditions. Chromatograms of all sulfur containing species, as well as key types of sulfur-containing species have been presented to demonstrate why the H2S yield patterns can vary among different condensates.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3