An evaluation on phase behaviors of gas condensate reservoir in cyclic gas injection

Author:

Zhang Angang,Fan Zifei,Zhao Lun,Xu Anzhu

Abstract

Maintaining the reservoir pressure by gas injection is frequently adopted in the development of gas condensate reservoir. The aim of this work is to investigate the phase behavior of condensate oil and remaining condensate gas in the formation under gas injection. The DZT gas condensate reservoir in East China is taken as an example. The multiple contact calculation based on cell-to-cell method and phase equilibrium calculations based on PR Equation of State (EOS) were utilized to evaluate the displacement mechanism and phase behavior change. The research results show that different pure gas has different miscible mechanism in the displacement of condensate oil: vaporizing gas drive for N2 and CH4; condensing gas drive for CO2 and C2H6. Meanwhile, there is a vaporing gas drive rather than a condensing gas drive for injecting produced gas. When the condensate oil is mixed with 0.44 mole fraction of produced gas, the phase behavior of the petroleum mixture reverses, and the condensate oil is converted to condensate gas. About the reinjection of produced gas, the enrichment ability of hydrocarbons is better than that of no-hydrocarbons. After injecting produced gas, retrograde condensation is more difficult to occur, and the remaining condensate gas develops toward dry gas.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference30 articles.

1. Simulation of a Partial Pressure Maintenance Gas Cycling Project with a Compositional Model, Carson Creek Field, Alberta

2. Ayala L.F., Ertekin T. (2005) Analysis of gas-cycling performance in gas/condensate reservoirs using neuro-simulation, Proceedings of SPE Annual Technical Conference and Exhibition, 9–12 October, Dallas, Texas, USA. SPE 95655.

3. Waterflooding Increases Gas Recovery

4. Vapor-liquid equilibria at high pressures: Calculation of partial molar volumes in nonpolar liquid mixtures

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3