Abstract
A fault stress analysis of a typical gas field in the Eastern Mediterranean is presented. The objective of this study is to provide estimates of thein situstresses and pore pressure for populating a regional Mechanical Earth Model and to characterize the stability of faults under current and changing reservoir conditions. The fault stability analysis is based on the Mohr-Coulomb frictional faulting theory. The verticalin situstress is estimated using seismic and density data and the bounds of the horizontal stresses were determined for different fault regimes. The pore pressure for determining the effectivein situstresses is estimated using the Bowers pore pressure prediction method. Fault stress analysis is performed in a series of calculations and the results are plotted on Mohr diagrams for shear failure. The fault stress analysis is performed on a wide range of alternative azimuth orientations forSHmaxin order to capture the uncertainty on the actual orientation. Sensitivity with respect to reservoir pore pressure change suggests that pressure reduction in the reservoir improves the fault stress stability, ignoring in the current analysis any stress arching effects. Pore pressure increase decreases the normal stress on the fault leading to increasing risk of shear failure of the critically stressed faults. The case study examines eight faults on the Aphrodite gas field with the objective to characterize if the faults are active or remain dormant under current stress conditions and how the stability may change in reservoir injection or depletion conditions.
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Reference35 articles.
1. Addis M.A., Last N.C., Yassir N.A. (1996) Estimation of horizontal stresses at depth in faulted regions and their relationship to pore pressure variations. SPE Formation Evaluation, 11, 1, 11–18, doi: 10.2118/28140-PA.
2. The Mechanics of Oblique Slip Faulting
3. Pore Pressure Estimation From Velocity Data: Accounting for Overpressure Mechanisms Besides Undercompaction
4. Christensen C.J., Powers G. (2013) Formation Evaluation Challenges in Tamar Field, Offshore Israel, SPWLA 54th Annual Logging Symposium, Society of Petrophysicists and Well Log Analysts, New Orleans, Louisiana.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献