Study of the cuttings transport in stable foam drilling

Author:

Zhang Jie,Luo Wen,Li Cuinan,Wan Tingyu,Zhang Zhen,Zhou Chenghua

Abstract

Based on the special rheological model of foam fluid, the mathematical models of cuttings transport for stable foam drilling in vertical/near vertical sections, the transitional section, and inclined/horizontal sections are established in this paper. The effects of various flow parameters on the cuttings bed thickness in the annulus are analyzed. The results show that inclination, annulus velocity, foam flow rate, and eccentricity are key factors affecting cuttings transport. The thickness of a cuttings bed gradually decreases with the inclination decrease of the highly deviated/horizontal sections. When the inclination is reduced to approximately 60°, the dynamic and static cuttings bed disappears and is substituted by the glide lamella, which consists of cuttings grains. Cuttings grains have various forms of movement on the lower borehole wall. When the inclination is reduced to below 30°, the cuttings are brought out of the well by the stable foam if the returning velocity of the annulus foam is larger than the depositing velocity of the cuttings. The thickness of the cuttings bed gradually decreases with the increase of annulus velocity. The increased foam quality reduces the concentration of annulus cuttings when the annulus velocity is constant and when it reaches a stable status earlier than the foam drilling fluid of lower foam quality. However, the concentration of the annulus cuttings at the final stage is constant. The thickness of the cuttings bed increases with increased eccentricity of the drill stem. When the eccentricity is large, the change of eccentricity has a high effect on the cuttings bed thickness.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3