Abstract
Many problems arising in the context of multiphase porous media flows that take the form of degenerate parabolic equations have a dissipative structure, so that the energy of an isolated system is decreasing along time. In this paper, we discuss two approaches to tune a rather large family of numerical method in order to ensure a control on the energy at the discrete level as well. The first methodology is based on upwinding of the mobilities and leads to schemes that are unconditionally positivity preserving but only first order accurate in space. We present a second methodology which is based on the construction of local positive dissipation tensors. This allows to recover a second order accuracy w.r.t. space, but the preservation of the positivity is conditioned to some additional assumption on the nonlinearities. Both methods are based on an underlying numerical method for a linear anisotropic diffusion equation. We do not suppose that this building block is monotone.
Funder
Agence Nationale de la Recherche
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献